The family of ternary cyclotomic polynomials with one free prime

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Prime Values of Cyclotomic Polynomials

We present several approaches on finding necessary and sufficient conditions on n so that Φk(x ) is irreducible where Φk is the k-th cyclotomic polynomial.

متن کامل

Ternary Cyclotomic Polynomials with an Optimally Large Set of Coefficients

Ternary cyclotomic polynomials are polynomials of the form Φpqr(z) = ∏ ρ(z − ρ), where p < q < r are odd primes and the product is taken over all primitive pqr-th roots of unity ρ. We show that for every p there exists an infinite family of polynomials Φpqr such that the set of coefficients of each of these polynomials coincides with the set of integers in the interval [−(p − 1)/2, (p + 1)/2]. ...

متن کامل

Weakly prime ternary subsemimodules of ternary semimodules

In this paper we introduce the concept of weakly prime ternary subsemimodules of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules. We prove that if $N$ is a weakly prime subtractive ternary subsemimodule of a ternary $R$-semimodule $M$, then either $N$ is a prime ternary subsemimodule or $(N : M)(N : M)N = 0$. If $N$ is a $Q$-...

متن کامل

Cyclotomic Polynomials

If n is a positive integer, then the n cyclotomic polynomial is defined as the unique monic polynomial having exactly the primitive n roots of unity as its zeros. In this paper we start off by examining some of the properties of cyclotomic polynomials; specifically focusing on their irreducibility and how they relate to primes. After that we explore some applications of these polynomials, inclu...

متن کامل

The cyclotomic polynomials

1. The definition and general results We use the notation e(t) = e 2πit. Note that e(n) = 1 for integers n, e(1 2) = −1 and e(s + t) = e(s)e(t) for all s, t. Consider the polynomial x n − 1. The complex factorisation is obvious: the zeros of the polynomial are e(k/n) for 1 ≤ k ≤ n, so x n − 1 = n k=1 x − e k n. (1) One of these factors is x − 1, and when n is even, another is x + 1. The remaini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Involve, a Journal of Mathematics

سال: 2011

ISSN: 1944-4184,1944-4176

DOI: 10.2140/involve.2011.4.317